Unsupervised Machine Learning Hidden Markov Models in Python

Category: Tutorial


Posted on 2019-03-18, updated at 2019-03-24, by Germany2020.

Description


1903180730180097.jpg
Unsupervised Machine Learning Hidden Markov Models in Python
.MP4 | Video: 1280x720, 30 fps(r) | Audio: AAC, 48000 Hz, 2ch | 2.90 GB
Duration: 7.5 hours | Genre: eLearning Video | Language: English



HMMs for stock price analysis, language modeling, web analytics, biology, and PageRank
What you'll learn
Understand and enumerate the various applications of Markov Models and Hidden Markov Models
Understand how Markov Models work
Write a Markov Model in code
Apply Markov Models to any sequence of data
Understand the mathematics behind Markov chains
Apply Markov models to language
Apply Markov models to website analytics
Understand how Google's PageRank works
Understand Hidden Markov Models
Write a Hidden Markov Model in Code
Write a Hidden Markov Model using Theano
Understand how gradient descent, which is normally used in deep learning, can be used for HMMs
Requirements
Familiarity with probability and statistics
Understand Gaussian mixture models
Be comfortable with Python and Numpy
Description
The Hidden Markov Model or HMM is all about learning sequences.
A lot of the data that would be very useful for us to model is in sequences. Stock prices are sequences of prices. Language is a sequence of words. Credit scoring involves sequences of borrowing and repaying money, and we can use those sequences to predict whether or not you're going to default. In short, sequences are everywhere, and being able to analyze them is an important skill in your data science toolbox.
The easiest way to appreciate the kind of information you get from a sequence is to consider what you are reading right now. If I had written the previous sentence backwards, it wouldn't make much sense to you, even though it contained all the same words. So order is important.
While the current fad in deep learning is to use recurrent neural networks to model sequences, I want to first introduce you guys to a machine learning algorithm that has been around for several decades now - the Hidden Markov Model.
This course follows directly from my first course in Unsupervised Machine Learning for Cluster Analysis, where you learned how to measure the probability distribution of a random variable. In this course, you'll learn to measure the probability distribution of a sequence of random variables.
You guys know how much I love deep learning, so there is a little twist in this course. We've already covered gradient descent and you know how central it is for solving deep learning problems. I claimed that gradient descent could be used to optimize any objective function. In this course I will show you how you can use gradient descent to solve for the optimal parameters of an HMM, as an alternative to the popular expectation-maximization algorithm.
We're going to do it in Theano and Tensorflow, which are popular libraries for deep learning. This is also going to teach you how to work with sequences in Theano and Tensorflow, which will be very useful when we cover recurrent neural networks and LSTMs.
This course is also going to go through the many practical applications of Markov models and hidden Markov models. We're going to look at a model of sickness and health, and calculate how to predict how long you'll stay sick, if you get sick. We're going to talk about how Markov models can be used to analyze how people interact with your website, and fix problem areas like high bounce rate, which could be affecting your SEO. We'll build language models that can be used to identify a writer and even generate text - imagine a machine doing your writing for you. HMMs have been very successful in natural language processing or NLP.
We'll look at what is possibly the most recent and prolific application of Markov models - Google's PageRank algorithm. And finally we'll discuss even more practical applications of Markov models, including generating images, smartphone autosuggestions, and using HMMs to answer one of the most fundamental questions in biology - how is DNA, the code of life, translated into physical or behavioral attributes of an organism?
All of the materials of this course can be downloaded and installed for FREE. We will do most of our work in Numpy and MatDescriptionlib, along with a little bit of Theano. I am always available to answer your questions and help you along your data science journey.
This course focuses on "how to build and understand", not just "how to use". Anyone can learn to use an API in 15 minutes after reading some documentation. It's not about "remembering facts", it's about "seeing for yourself" via experimentation. It will teach you how to visualize what's happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.
See you in class!
HARD PREREQUISITES / KNOWLEDGE YOU ARE ASSUMED TO HAVE:
calculus
linear algebra
probability
Be comfortable with the multivariate Gaussian distribution
Python coding: if/else, loops, lists, dicts, sets
Numpy coding: matrix and vector operations, loading a CSV file
Cluster Analysis and Unsupervised Machine Learning in Python will provide you with sufficient background
TIPS (for getting through the course):
Watch it at 2x.
Take handwritten notes. This will drastically increase your ability to retain the information.
Write down the equations. If you don't, I guarantee it will just look like gibberish.
Ask lots of questions on the discussion board. The more the better!
Realize that most exercises will take you days or weeks to complete.
Write code yourself, don't just sit there and look at my code.
WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:
Check out the lecture "What order should I take your courses in?" (available in the Appendix of any of my courses, including the free Numpy course)
Who this course is for:
Students and professionals who do data analysis, especially on sequence data
Professionals who want to optimize their website experience
Students who want to strengthen their machine learning knowledge and practical skillset
Students and professionals interested in DNA analysis and gene expression
Students and professionals interested in modeling language and generating text from a model



1903180730230089.jpg








Download (Uploadgig)
https://uploadgig.com/file/download/Af7142e5Cb833f1e/qdym2.Unsupervised.Machine.Learning.Hidden.Markov.Models.in.Python.part1.rar
https://uploadgig.com/file/download/70b327a39ca4531c/qdym2.Unsupervised.Machine.Learning.Hidden.Markov.Models.in.Python.part2.rar
https://uploadgig.com/file/download/3a6A66ca8B10be44/qdym2.Unsupervised.Machine.Learning.Hidden.Markov.Models.in.Python.part3.rar
Download ( Rapidgator )
https://rapidgator.net/file/3c86a85d0a5a1f3f1287d13526413d39/qdym2.Unsupervised.Machine.Learning.Hidden.Markov.Models.in.Python.part1.rar
https://rapidgator.net/file/11bd8e20b69b1c05f8c159f472e1da82/qdym2.Unsupervised.Machine.Learning.Hidden.Markov.Models.in.Python.part2.rar
https://rapidgator.net/file/b709a0e2553d5814b7af0b9527075112/qdym2.Unsupervised.Machine.Learning.Hidden.Markov.Models.in.Python.part3.rar
Download ( NitroFlare )
http://nitroflare.com/view/14455FAB595D685/qdym2.Unsupervised.Machine.Learning.Hidden.Markov.Models.in.Python.part1.rar
http://nitroflare.com/view/EB0925F6DBF962C/qdym2.Unsupervised.Machine.Learning.Hidden.Markov.Models.in.Python.part2.rar
http://nitroflare.com/view/F1B9B51BB8357BA/qdym2.Unsupervised.Machine.Learning.Hidden.Markov.Models.in.Python.part3.rar


Sponsored High Speed Downloads
9771 dl's @ 3117 KB/s
Download Now [Full Version]
6775 dl's @ 2468 KB/s
Download Link 1 - Fast Download
9047 dl's @ 3011 KB/s
Download Mirror - Direct Download



Search More...
Unsupervised Machine Learning Hidden Markov Models in Python

Search free ebooks in ebookee.com!


Related Archive Books

Archive Books related to "Unsupervised Machine Learning Hidden Markov Models in Python":



Links
Download this book

No active download links here?
Please check the description for download links if any or do a search to find alternative books.


Related Books

  1. Ebooks list page : 39835
  2. 2019-07-13Unsupervised Machine Learning Hidden Markov Models In Python
  3. 2019-03-24Unsupervised Machine Learning Hidden Markov Models in Python
  4. 2019-05-28Machine Learning Basics Classification Models In Python
  5. 2019-05-11Machine Learning Basics Classification models in Python
  6. 2019-05-11Machine Learning Basics Classification models in Python
  7. 2007-07-30The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic With C , Java and SymbolicC Programs
  8. 2017-10-28[PDF] Unsupervised Machine Learning in Python: Master Data Science and Machine Learning with Cluster Analysis, Gaussian Mixture Models, and Principal Components Analysis
  9. 2019-04-24Udemy - Cluster Analysis and Unsupervised Machine Learning in Python
  10. 2018-10-17Hands-On Markov Models with Python: Implement probabilistic models for learning complex data sequences using the Python...
  11. 2017-07-31Unsupervised Machine Learning in Python
  12. 2012-03-13Machine Learning for Hackers By Drew Conway, John Myles White
  13. 2019-10-29Inference in Hidden Markov Models
  14. 2019-10-21Machine Learning e Data Science com Python de A a Z
  15. 2019-09-26The complete Machine Learning Data Science Course in Python
  16. 2019-09-26Machine Learning e Data Science com Python de A a Z
  17. 2019-09-16Machine Learning From The Scratch Using Python
  18. 2019-09-14Machine Learning And Data Science With Python A Complete Beginners Guide
  19. 2019-09-11Data Science Unsupervised Machine Learning Using R [update]
  20. 2019-08-27Hidden Markov models for time series an introduction using R

Comments

No comments for "Unsupervised Machine Learning Hidden Markov Models in Python".


    Add Your Comments
    1. Download links and password may be in the description section, read description carefully!
    2. Do a search to find mirrors if no download links or dead links.
    Back to Top